Histone Methyltransferase SET1 Mediates Angiotensin II-Induced Endothelin-1 Transcription and Cardiac Hypertrophy in Mice.

نویسندگان

  • Liming Yu
  • Guang Yang
  • Xinyu Weng
  • Peng Liang
  • Luyang Li
  • Jianfei Li
  • Zhiwen Fan
  • Wenfang Tian
  • Xiaoyan Wu
  • Huihui Xu
  • Minming Fang
  • Yong Ji
  • Yuehua Li
  • Qi Chen
  • Yong Xu
چکیده

OBJECTIVE Endothelin-1 is a potent vasoconstrictor derived from vascular endothelium. Elevated endothelin-1 levels are observed in a host of cardiovascular pathologies including cardiomyopathy. The epigenetic mechanism responsible for endothelin-1 induction in these pathological processes remains elusive. APPROACH AND RESULTS We report here that induction of endothelin-1 expression in endothelial cells by angiotensin II (Ang II) was accompanied by the accumulation of histone H3K4 trimethylation, a preeminent histone modification for transcriptional activation, on the endothelin-1 promoter. In the meantime, Ang II stimulated the expression and the occupancy of Suv, Ez, and Trithorax domain 1 (SET1), a mammalian histone H3K4 trimethyltransferase, on the endothelin-1 promoter, both in vitro and in vivo. SET1 was recruited to the endothelin-1 promoter by activating protein 1 (c-Jun/c-Fos) and synergized with activating protein 1 to activate endothelin-1 transcription in response to Ang II treatment. Knockdown of SET1 in endothelial cells blocked Ang II-induced endothelin-1 synthesis and abrogated hypertrophy of cultured cardiomyocyte. Finally, endothelial-specific depletion of SET1 in mice attenuated Ang II-induced pathological hypertrophy and cardiac fibrosis. CONCLUSIONS Our data suggest that SET1 epigenetically activates endothelin-1 transcription in endothelial cells, thereby contributing to Ang II-induced cardiac hypertrophy. As such, screening of small-molecule compound that inhibits SET1 activity will likely offer a new therapeutic solution to the treatment of cardiomyopathy.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A crosstalk between chromatin remodeling and histone H3K4 methyltransferase complexes in endothelial cells regulates angiotensin II-induced cardiac hypertrophy.

Angiotensin II (Ang II) induces cardiac hypertrophy and fibrosis in part by stimulating endothelin (ET-1) transcription. The involvement of the epigenetic machinery in this process is largely undefined. In the present study, we examined the epigenetic maneuvering underlying cardiac hypertrophy and fibrosis following ET-1 transactivation by Ang II. In response to Ang II stimulation, core compone...

متن کامل

Role of Histone Demethylases in Cardiomyocytes Induced to Hypertrophy

Epigenetic changes induced by histone demethylases play an important role in differentiation and pathological changes in cardiac cells. However, the role of the jumonji family of demethylases in the development of cardiac hypertrophy remains elusive. In this study, the presence of different histone demethylases in cardiac cells was evaluated after hypertrophy was induced with neurohormones. A c...

متن کامل

Buckwheat Rutin Inhibits AngII-induced Cardiomyocyte Hypertrophy via Blockade of CaN-dependent Signal Pathway

Buckwheat rutin has been found to be able to inhibit angiotensin II (AngII) - induced hypertrophy in cultured neonatal rat cardiomyocytes, but the mechanism remains uncertain. In this study, myocardial hypertrophy model was made by adding AngII to the medium of cardiac myocytes of neonatal rats, meanwhile, different concentrations of buckwheat rutin were applied to observe their effects. Intrac...

متن کامل

Buckwheat Rutin Inhibits AngII-induced Cardiomyocyte Hypertrophy via Blockade of CaN-dependent Signal Pathway

Buckwheat rutin has been found to be able to inhibit angiotensin II (AngII) - induced hypertrophy in cultured neonatal rat cardiomyocytes, but the mechanism remains uncertain. In this study, myocardial hypertrophy model was made by adding AngII to the medium of cardiac myocytes of neonatal rats, meanwhile, different concentrations of buckwheat rutin were applied to observe their effects. Intrac...

متن کامل

Involvement of Nuclear Factor- B and Apoptosis Signal-Regulating Kinase 1 in G-Protein–Coupled Receptor Agonist–Induced Cardiomyocyte Hypertrophy

Background—Recently, reactive oxygen species (ROS) have emerged as important molecules in cardiac hypertrophy. However, the ROS-dependent signal transduction mechanism remains to be elucidated. In this study, we examined the role of an ROS-sensitive transcriptional factor, NFB, and a mitogen-activated protein kinase kinase kinase, apoptosis signal-regulating kinase 1 (ASK1), in G-protein–couple...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Arteriosclerosis, thrombosis, and vascular biology

دوره 35 5  شماره 

صفحات  -

تاریخ انتشار 2015